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Abstract. Nitrite ion, a characteristic pollutant, can be removed from water by reverse osmosis, 

distillation, or ion exchange resin. In this study, we removed it by using ZnO and CeO2 nanoparticles. 

First, zinc hydroxide and cerium hydroxide were prepared by the hydrothermal method and heated at 

90°C to dry. Second, they were annealed at 400°C to produce nanoparticles of ZnO and CeO2, 

respectively. The obtained samples were characterized by X-ray diffraction to ascertain their structure 

and chemical composition. The surface morphology analysis of the nanoparticles was performed using 

scanning electron microscopy. Atomic force microscopy was employed to characterize the imaging 

surface and ascertain the surface roughness. The functional groups present at the surface of the 

nanoparticles were investigated using the Fourier transform infrared spectroscopy method. The optical 

properties of these particles were investigated using the UV-visible spectroscopy. Further, the produced 

nanoparticles were used to adsorb NO2
- ions from aqueous solutions. The results showed that the 

nanoparticles which were heated at 90°C (hydroxide forms) presented a higher activity for nitrite ions 

removal than those that were heated at 400°C (oxide forms). This may be related to nitrite ions 

preferential adsorption to hydroxide forms rather than to oxide forms; in both cases (90°C and 400°C), 

zinc oxide nanoparticles presented higher nitrite removal activity. 
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Introduction 

Nanoparticles are of incredible interest 

because of their extremely small size and large 

surface area to volume proportion, which lead to 

both physical and chemical differences in their 

properties [1]. Zinc oxide nanoparticles represent 

a white crystalline water insoluble powder [2], 

considered as one of the most promising inorganic 

oxides, with excellent magnetic, electrical, and 

optical properties. Zinc oxide nanoparticles are 

abundant in three forms: hexagonal wurtzite, rock 

salt, and cubic structures as semiconductors [3]. 

Different methods have been applied to synthesize 

zinc oxide nanoparticles such as the solution-

gelatine (sol-gel) method [4], chemical vapor 

deposition, thermal decomposition, and alloy 

evaporation-deposition [5]. The temperature, 

solvents, and media of the experiment affect the 

particle morphology and particle size of 

synthesized zinc oxide nanoparticles.  

Cerium dioxide nanoparticles (CNPs) have 

been widely utilized in various advanced 

technologies, such as solid oxide fuel cells,  

high-temperature oxidation protection materials, 

catalytic materials, oxygen sensors and  

solar cells, etc. [6]. CeO2 nanoparticles have also 

been used as a free radical scavenger, to modulate 

oxidative stress in biological systems [7]. Various 

chemical methods have been reported on the 

synthesis of CeO2 oxide nanoparticles such as 

reversed micelles route, co-precipitation, 

hydrothermal synthesis, forced hydrolysis, 

solvothermal synthesis, sol–gel process, pyrolysis, 

electrochemical methods, and sonochemical 

methods [8]. There are other methods used to 

prepare nanoparticles of zinc oxide and cerium 

dioxide [9], or cerium dioxide with other metals 

[10,11]. These methods used organic solvents in 

the preparation of these nanoparticles. 

Nitrogenous pollutants such as nitrite and 

nitrate are bioaccumulated in water and soil, 

posing a threat to humans and plants [12]. A high 

concentration of nitrite in blood can cause the 

formation of methaemoglobin by reacting with 

haemoglobin Fe3+ ions, which causes a failure in 

oxygen-carrying ability [13]. There are many 

methods of decreasing nitrite ions,  

such as spectrophotometric chemiluminescent, 

electrochemical, chromatographic [14], reverse 

osmosis, ion exchange, electrodialysis, chemical 
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coagulation, membrane method, and adsorption, 

and each approach preents advantages and 

disadvantages [15]. Adsorption with nano-

adsorbents is an appealing and promising 

approach for wastewater decontamination due to 

several advantages, including ease of use, cost 

effectiveness, environmental friendliness, and a 

high adsorption rate. The development of an 

effective adsorbent is the foundation of this 

technique's effectiveness [16]. Due to their unique 

physical, chemical, and surface qualities, 

adsorbent nanoparticles are often thought to be 

superior in removing nitrite [17].  

This study aims to find an easy and 

inexpensive method to synthesize ZnO and CeO2 

nanoparticles by using urea as a precipitating 

agent, and using these nanoparticles as sorbents to 

remove contamination with nitrite ions in aqueous 

solutions. 

 

Experimental Methods 

Materials  

Ammonium hydroxide, zinc acetate, and 

urea were purchased from Sigma-Aldrich. 

Cetrimethyl ammonium bromide (CTAB) and 

ceric sulphate tetrahydrate were obtained from 

Merck Company. Sodium nitrite, potassium 

iodide, and hydrochloric acid 37%) were obtained 

from British Drug Houses Company. 

Synthesis of zinc oxide nanoparticles  

Zinc oxide nanoparticles were synthesized 

by a hydrothermal technique (autoclave) 

according to a previously published method [18], 

by dissolving 3 g (16.36 mmol) of zinc acetate in 

distilled water (75 mL) and adding 0.981 g  

(16.35 mmol) of urea, and finally adding 1 g  

(2.74 mmol) of CTAB to this solution. Then the 

obtained solution was stirred with a magnetic 

stirrer at 25°C for 10 min, in a beaker until it 

became homogenous. Afterwards, the mixed 

solutions were placed in a Teflon-lined autoclave 

(100 mL), sealed, and kept at 200°C for 6 hours. 

The precipitate product (white colour) was 

washed several times with distilled water, then 

dried at 90°C for 1 hour and annealed at 400°C 

for 2 hours, according to Eqs.(1-4). 
 

NH2CONH2 + 3H2O → 2NH4OH + CO2              (1) 

 

Zn(CH3COO)2  + 2 NH4OH →                                 
   

       Zn(OH)2  + 2CH3COONH4     (2) 

 

NH2CONH2 + Zn(CH3COO)2  + 3 H2O →           
 

           Zn(OH)2 + CO2 + 2CH3COONH4     (3) 

 

Zn(OH)2  
∆
→ ZnO + H2O                     (4) 

Synthesis of cerium dioxide nanoparticles 

Cerium dioxide nanoparticles were 

prepared by a hydrothermal method using an 

autoclave according to a previously published 

method [8,19], by dissolving 3g (7.43 mmol) of 

cerium sulphate tetrahydrate in 75 mL of distilled 

water, then adding 1 g (16.66 mmol) of urea and 

finally dissolving 2 g (5.487 mmol) of CTAB in 

this solution. The mixture solution was stirred 

with a magnetic stirrer at 25°C (15 min) in a 

beaker until it became homogenous. Then it was 

put into a Teflon lined autoclave (100 mL), sealed 

and put into an oven at 200°C for 6 hours. After 

that, the precipitate was dried for 60 minutes at 

90°C for 1 h, and at 400°C for 2 hours, according 

to the following Eqs.(5-7).  
 

NH2CONH2 + 3H2O → 2NH4OH + CO2                 (5) 
 

Ce(SO4)2. 4H2O + 4NH4OH →  
 

 Ce(OH)4 + 4H2O + 2(NH4)2SO4             (6) 
 

Ce(OH)4
400℃
→   CeO2 + 2H2O                    (7) 

 

Instruments  

The UV-vis spectra of nanoparticles’ 

solutions (1‧10-5 M, in ethanol solvent) were 

registered on a UV-Visible-1650 PC Shimadzu 

instrument, in transmission mode, in the 200-1100 

nm wavelength range, at ambient temperature. 

The obtained data were used to calculate the 

energy gap values of nanoparticle solutions, 

according to Eq.(8) [20]. 
 

Energy gap (eV) =
1240

λmax 
                                           (8) 

 

where, 1240 - the factor used to convert nm to eV;  

λmax - the maximum transmittance, nm. 
 

The infrared spectra were registered on a 

FT-IR-8400S Shimadzu instrument, in 

transmission mode, in the 4000-400cm-1 range, at 

ambient temperature. 

Wide-angle X-rays diffraction (WAXD) 

study was performed on a XRD-6000 Shimadzu 

instrument, with Bragg Brentano parafocusing 

goniometer. Scans were recorded in step mode 

using CuKα radiation (λ= 0.1541 nm). The 

working conditions were 40 kV and 30 mA tube 

power. The obtained diffraction data where 

mathematically treated to obtain structural 

information. The Scherrer equation (Eq.(9)) was 

used to calculate the size of the crystal particles.  
 

𝐷 = 𝐾λ/𝛽𝑐𝑜𝑠 θ                                                        (9) 
 

where, D - the size of crystalline; 
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k - the form factor (all most equal to 0.98); 

ƛ - the wavelength of X-ray; 

β - the full width at half maximum (FWHM) 

of an individual peak at 2Ɵ (where Ɵ is 

the Bragg angle) [21]. 
 

The lattice constants (a and c) of hexagonal 

system nanoparticles were estimated by using 

Eq.(10). 
 

1
𝑑ℎ𝑘𝑙
2⁄ =

4(ℎ2+ℎ𝑘+𝑘2)

3𝑎2
+ (𝐼

2

𝐶2
⁄ )                           (10) 

 

where,  h, k, and l are Miller indices of a plane; 

dhkl is the interplanar spacing. 
 

The lattice constant (a) values of cubic 

system nanoparticles were calculated according to 

Eq.(11). 
 

1
𝑑ℎ𝑘𝑙
2⁄ = (ℎ2 + 𝑘2 + 𝐼2)/𝑎2             (11) 

 

Atomic force microscopy (AFM) was 

performed on an AFM-SPM-AA300 Shimadzu 

instrument, at ambient temperature.  

Scanning electron (SEM) images were 

acquired with a TESCAN VEGA scanning 

electronic microscope, operating at a voltage of 

30 kV with secondary and backscattering 

electrons in high vacuum mode.  

Evaluation of adsorption of the nitrite ions onto 

the prepared nanoparticles 

The nanoparticles of Zn(OH)2 and Ce(OH)4 

(as-prepared), as well as ZnO and CeO2 

(annealed), were used to adsorb nitrite anions 

(NO2
-) from aqueous solution and the absorbance 

at 362 nm was measured [22]. Three containers 

(50 mL) were marked T, B, and C respectively. 

Further, were added 5 mL of distilled water,  

0.01 g of nanoparticles, and 0.6 mL of sodium 

nitrite solution (1.55‧10-3 M). All samples were 

shaken and separated, then 1 mL of potassium 

iodide solution (4.75‧10-5 M) with some drops of 

hydrochloric acid (37%), was added to all 

containers, as presented in Table 1. After  

10 minutes, the absorbance at 362 nm was 

measured of each container, the reaction is 

explained according to Eq.(12). 
 

2𝑁𝑎𝑁𝑂2 + 2𝐾𝐼 + 4𝐻𝐶𝑙 →     
 

          2𝑁𝑂 +  2𝑁𝑎𝐶𝑙 + 𝐼2 + 2𝐾𝐶𝑙 + 2𝐻2𝑂           (12) 
 

The percentage of nitrite pollution  

removal and efficiency can be calculated using 

Eqs.(13 and 14), respectively [17]. 
 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒(%𝑅) = [𝐵 − (𝐶 − 𝑇)/𝐵] × 100   (13) 
 

where,  B stands for “blank”, C for “control”; 

T for “test” as indicated in Table 1. 
 

𝑞
𝑡
=  (𝐵 − 𝑇) 𝑣 𝑤⁄                  (14) 

 

where, 𝑣 is the volume of nitrite solution (mL); 

𝑤 is the weight of nanoparticles (g); 

qt is the adsorption capacity of prepared 

adsorbent in rapport with nitrite ions. 
 

Results and discussion  

Optical properties of the nanoparticles’ solutions 

The energy gap was determined using a 

plot of the optical transmission versus wavelength 

of nanoparticles for all samples (as-prepared and 

annealed), as illustrated in Figure 1. 
 

Table 1 

The weight and volumes require demonstrating the 

nitrite adsorption on the nanoparticles.  

Reagent T B C 

nanoparticles (g) 0.01  - 0.01  

distilled water (mL)  5 5 5 

sodium nitrite (mL) 0.6 0.6 - 

Mix up with shaker for 

15 min at 250 rpm then 

filtration 

potassium iodide (mL) 1 1 1 

total volume (mL) 6.6 6.6 6.6 

 
 

 

 

(a) (b) 

Figure 1. The transmittance spectra for ZnO (a) and CeO2 (b) nanoparticles solutions  

(obtained at the temperature range from 90°C to 400°C). 
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The permeability edge (redshift) of zinc 

hydroxide and zinc oxide nanoparticle solutions 

increases significantly from 337 nm (3.67 eV for 

Zn(OH)2) to 372 nm (3.33 eV for ZnO), as shown 

in Figure 1(a). These results are in concordance 

with the previously published work [23]. On the 

other hand, cerium hydroxide and cerium dioxide 

nanoparticles solutions, show an increase in 

transmittance edge to red shift from 330 nm  

(3.76 eV for Ce(OH)4) to 380 nm (3.26 eV for 

CeO2). These results are in concordance with the 

previously published paper [24], as shown in 

Figure 1(b). 

Characterization of the nanoparticles by using 

FTIR method 

The FTIR spectrum of the Zn(OH)2 

nanoparticles is presented in Figure 2(a). The 

peak at 3310 cm-1 refers to O-H bond stretching 

vibration [25]. The peaks at 1047 cm-1 and  

833 cm-1 relate to the stretching vibration of C-O 

and Zn-O, respectively [26]. The peaks at  

468 cm-1 and 455 cm-1 correspond to Zn-O 

stretching and bending vibrations, respectively, of 

the Zn(OH)2 nanoparticles [27,28]. The stretching 

peaks at 1502 cm-1 and 1390 cm-1 correspond  

to the stretching vibration of C=O, C-O,  

respectively [29]. Figure 2(b) shows the FTIR 

spectrum of ZnO. The broad bands at 3448 cm-1 

and 1639 cm-1 are related to stretching and 

bending of the O-H bond in water, respectively. 

The peak at 570 cm-1 corresponds to the stretching  

of Zn-O [30]. 

The FTIR spectrum for Ce(OH)4,  

Figure 2(c), displays two bonds at 3473 cm-1 and 

1644 cm-1 which are attributed to the stretching 

and bending vibrations of absorbed molecular  

water. The peak at 1506 cm-1 is due to the bending 

vibration of C=C for CTAB. The peak  

at 663 cm-1 corresponds to Ce-O stretching, while 

the peaks at 474-435 cm-1 correspond to the 

vibration of the O-Ce-O stretching. The FTIR of 

the CeO2 nanoparticles is shown in Figure 2(d). 

The peaks of about 3425 cm-1 and 1622 cm-1  

are due to stretching and bending vibrations  

of absorbed molecules of water [31].  

The peak at 1114 cm-1 corresponds to the 

vibration of the Ce-OH overtone band [32]. The 

tiny peak seen at 1055 cm-1 relates to the C-O 

component of the alcohol carried over to the 

sample. The broad peak between 560 cm-1 to  

445 cm-1 is attributed to the O-Ce-O stretching  

vibration [33]. 
 

 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 2. FTIR spectra for Zn(OH)2 (a), ZnO (b), Ce(OH)4 (c), and CeO2 (d) nanoparticles  

obtained at the temperature range from 90°C to 400°C. 
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XRD diffraction results 

The X-ray diffraction pattern shows 

characteristic ZnO peaks at (2θ= 33.227°, 

34.925°, 36.444°, 47.612°, 56.692°, 62.323°, and 

67.980°), which correspond to the diffraction 

planes (100), (002), (101), (102), (110), (103), 

and (112), respectively, Figure 3. These peaks are 

indexed as the hexagonal wurtzite phase of  

ZnO nanoparticles with lattice constants  

a= b= 3.3046 Å and c= 5.0266 Å (JCPDS Card 

no.79–2205) and are compatible with that 

described in [34]. Furthermore, the XRD 

spectrum revealed no peaks other than the typical 

ZnO peaks. The Zn(OH)2 peaks at (2θ= 33.227°, 

34.925°, 36.444°, 47.612°, 56.692°, 62.323°,and 

63.176°), which correspond to the diffraction 

planes (100), (002), (101), (102), (110), (103), 

and (112) respectively, this X-ray profile is very 

similar to ZnO results (JCPDS Card no. 01-089-

0510) [35]. The size of the crystal particles and 

the lattice constants (a and c) of Zn(OH)2 and 

ZnO nanoparticles are shown in Table 2.  

The XRD results for Ce(OH)4 are strikingly 

similar to those of CeO2, with only a minor 

difference in intensity, indicating that CeO2 is 

formed in both cases (Table 3). The main 

Ce(OH)4 peaks at (2θ= 28.736°, 34.508°, 47.541°,  

56.492°, 61.433°, and 69.341°), which correspond 

to the diffraction planes (111), (200), (220), (311), 

(222), and (400), could be attributed to  

the cubic shape, as indexed in (JCPDS Card  

no. 19-0284) [36].  

 

 
Table 2 

XRD results for Zn(OH)2 and ZnO nanoparticles. 

Nanoparticles 2θ (°)  hkl FWHM (°) d (Å) D (Å) 
Lattice constants 

a (Å) c (Å) 

Zn(OH)2 

 

36.44 101 0.6381 2.4634 131.02 3.304 5.191 

33.05 100 0.6667 2.7077 124.25 - - 

63.17 103 0.4071 1.4706 229.4 - - 

ZnO 

 

36.33 101 0.6188 2.4706 135 3.243 5.206 

31.83 100 0.5437 2.8087 152.1   

34.48 002 0.5542 2.5987 150   

 

 
Table 3 

The XRD results for Ce(OH)4 and CeO2 nanoparticles. 

 

 

  

(a) JCPDS # 01-089-0510 (b) JCPDS # 79–2205 

 

Figure 3. XRD patterns of Zn(OH)2 (a) and ZnO (b) nanoparticles obtained at  

the temperature range from 90°C to 400°C.  
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Nanoparticles 2θ (°) hkl FWHM (°) d(Å) D(Å) Lattice constant, a (Å) 

 

Ce(OH)4  

28.730 111 0.43350 2.90713 189.9 5.413 

44.229 200 0.42700 2.04614 201.0 - 

47.501 220 0.64000 1.91256 135.5 - 

 

CeO2 

28.6574 111 0.78310 3.11252 104.7 5.405 

47.5430 220 0.93460 1.91099 928.3 - 

56.4018 311 0.98100 1.63004 918.0 - 
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For CeO2, the main peaks at (2θ= 28.657° , 

34.150°, 47.543°, 56.401°, 61.512°, 69.548°, 

75.619°, and 76.740°), which correspond to the 

diffraction planes (111), (200), (220), (311), 

(222), (400), (311), and (420), the same peaks 

emerged with increasing intensity of both, as 

indexed in (JCPDS Card No: 81–0792 [37]. The 

lattice constant values (a) for CeO2 are presented 

in Figure 4 and Table 3. 

Surface morphology of the obtained nanoparticles 

studied by atomic force microscopy 

Figure 5 depicts AFM images of Zn(OH)2 

and ZnO nanoparticles, whose dispersion and 

accumulation change from an oval shape 

(Zn(OH)2) Figure 5(a), to the largest shape (ZnO), 

as shown in Figure 5(b). This may be related to 

the conversion of most hydroxides to oxides 

during high-temperature heating (400°C). 
 

 

 

(a) JCPDS # 19-0284 (b) JCPDS # 81–0792 

Figure 4. XRD patterns of Ce(OH)4 (a) and CeO2 (b) nanoparticles obtained at the temperature range from 

90°C to 400°C. 
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(a) 

 

 
Average grain size = 35.44 nm 

(b) 

 

 
Average grain size = 110.23 nm 

(c) 

 
 

  
Average grain size = 23.13 nm 

(d) 

Figure 5. Three-dimensional atomic force microscopy images and granularity collection division charts of 

Zn(OH)2 (a), ZnO (b), Ce(OH)4 (c), and CeO2 (d) nanoparticles.  
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That is, during the preparation technique 

(autoclave), the product can be transformed into 

zinc oxide nanoparticles, and the grain size grows 

from 28.29 nm to 35.44 nm as the temperature 

rises.  

Figure 5 shows AFM pictures of Ce(OH)4 

and CeO2 nanoparticles which come in a variety 

of shapes that influence their distribution and 

accumulation. The Ce(OH)4 sample resembles 

gigantic balls with an average grain size of  

110.23 nm, Figure 5(c), but after 400 °C 

annealing, the forms and grain size are reduced to 

23.13 nm, Figure 5(d), possibly due to the effect 

of temperature on the loss of water molecules 

from the sample and the conversion from the 

hydroxyl form to the oxide form, as described  

in Eq.(7). 
Surface scanning electron microscopy 

investigations 

The surface morphological investigation for 

ZnO and CeO2 nanoparticles samples annealed at 

a temperature 400°C for 2 hours, was done using 

SEM analysis, and is shown in Figure 6. These 

analyses show a high porosity structure appearing 

on the sample’s surfaces with an increase in the 

annealing temperature. Clusters of nanoparticles 

were seen on the surface, with a few aggregates. 

The SEM image of ZnO nanoparticles shows very 

wide particle size distribution and different 

morphologies of platelets and flaky particles, 

Figure 6(a). On the other hand, the SEM images 

of CeO2 nanoparticles appear to be nanoclusters, 

as presented in Figure 6(b). 
 

 
(a) 

 
(b) 

Figure 6. SEM images of annealing ZnO (a), 

CeO2 (b) nanoparticles annealed at 400°C  

for 2 hours. 

Evaluation of possible applications of 

nanoparticles in the adsorption of nitrite ions 

The results show that Zn(OH)2 

nanoparticles have the highest %R activity, while 

CeO2 has the lowest one. The %R of nanoparticles 

was as follows: Zn(OH)2> ZnO> Ce(OH)4> CeO2, 

as in Figure 7 and Table 4.  

 
Table 4 

Removal rate (%R) and the adsorption capacity (qt) 

of the prepared nanoparticles  
 

Nanoparticles Removal rate 

(%R) 

Adsorption 

capacity (qt) 

Hydroxi

de forms  

Oxide 

forms  

Hydroxide 

forms  

Oxide 

forms  

ZnO 59.50 37.09 155.52 89.61 

CeO2 32.75 33.58 54.03 79.67 

 
 

Figure 7. The removal rate (%R) of nitrites for 

different oxide based nanosorbents obtained  

in this study. 
 

The significant decrease in % R for ZnO 

compared to Zn(OH)2 from 59.50% to 37.09% is 

due to the higher activity of the hydroxide form 

(Zn(OH)2) to nitrite removal than the annealed 

form (ZnO). The low adsorption of nitrite from 

aqueous solutions by Ce(OH)4 from 32.75%  

to 33.58% for CeO2 could be attributed to  

the higher average grain size for Ce(OH)4  

(110.23 nm) and lower surface area, thus causing 

decrease in %R activity. Whilst, the cerium 

dioxide nanoparticles have a lower average grain  

size (23.13 nm) and a higher surface area that 

cause increase in %R activity, as presented  

in Figure 5.  

The qt and %R of the nanoparticles have the 

same increasing sequences in comparison to the 

samples in hydroxide and oxide forms, as in  

Table 4. The highest adsorption capacity (qt), was 

related to zinc oxide nanoparticles. With the 

exception of cerium hydroxide, we concluded that 

the %R and qt of nitrite prefer to adsorb on 

hydroxide forms rather than on oxide forms, 

which may be related to the large differences in 

nanoparticle size between them. 
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This method differs from the previous 

methods, which depend on activated carbon 

modified by potassium permanganate and showed 

good adsorption ability for nitrate and nitrite ions 

from aqueous solutions [14], or during 

electrochemical oxidation of nitrite to nitrate by 

chlorine [37]. 

 

Conclusions 

Different nanoparticles were prepared using 

the autoclave hydrothermal method. These 

nanoparticles were heated for one hour at 90°C to 

produce Zn(OH)2 and Ce(OH)4, and then annealed 

for two hours at 400°C to produce ZnO and CeO2, 
respectively. The obtained nanoparticles where 

characterized by XRD, FTIR, UV–Visible, AFM, 

and SEM.  

The results show that the average grain size 

of Zn(OH)2 nanoparticles was 28.29 nm, which 

was smaller than that of ZnO nanoparticles, of 

35.44 nm, and the ZnO morphology was platelet-

like and flaky particles. Meanwhile, the average 

grain size of Ce(OH)4 was 110.23 nm, much 

larger than that for CeO2 nanoparticles, of 23.13 

nm, and the morphology for CeO2 nanoparticles 

appeared to be nanoclusters. 

All hydroxide nanoparticles (Zn(OH)2 and 

Ce(OH)4) have higher %R and qt for nitrite 

removal than oxide nanoparticles (ZnO and 

CeO2). These results may be related to the 

adsorption of ions on the hydroxide surfaces of 

nanoparticles to form hydrogen bonding rather 

than on oxide surfaces. 
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