DEGRADATION OF DIISOPROPYL METHYLPHOSPHONATE IN AQUEOUS SOLUTIONS BY ULTRASONIC IRRADIATION COMBINED WITH OXIDATION PROCESS

Muslim Hasan Allawi^a, Riyadh Sadeq ALMukhtar^b^a, Shurooq Talib Al-Humairi^b^a, Ali Dawood Salman^b^{b,c}, Tatjána Juzsakova^b^b, Viktor Sebestyén^b^b, Igor Cretescu^b^{d*}

^aChemical Engineering Department, University of Technology-Iraq, Al-Sina'a Street, Baghdad 10066, Iraq

^bSustainability Solutions Research Lab, Research Centre for Biochemical, Environmental and Chemical Engineering,

Faculty of Engineering, University of Pannonia, 10, Egyetem str., Veszprém, Hungary

^cDepartment of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering,

Basra University for Oil and Gas, Basra 61004, Iraq

^dDepartment of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73, D. Mangeron blvd, Iasi, 700050, Romania *e-mail: icre@tuiasi.ro

Abstract. The degradation of diisopropyl methylphosphonate (DIMP) in aqueous solutions was studied using ultrasound irradiation with a fixed frequency of 26.2 kHz, following the first-order kinetic model. The study's primary goal was to determine the influence of the following experimental parameters: the pH (at different values of 2, 7 and 10), the initial concentration of DIMP (at different concentrations: 7, 14, 30, 50, 80 mg/L), the processing time (at different periods: 15, 30, 45, 60, 80, 90 min), and the concentration of the additive CCl₄ (at different concentrations: 0.002, 0.004, 0.006, 0.008 mg/L). A DIMP removal efficiency of 98% from aqueous solution was obtained at pH 10 and 0.008 mg/L CCl₄, after an ultrasound irradiation time of 45 min, pointing out the influence of the above-mentioned experimental parameters on the DIMP degradation process.

Keywords: organophosphorus compound degradation, ultrasonic irradiation, advanced oxidation process, model solution treatment.

Received: 15 May 2023/ Revised final: 06 October 2023/ Accepted: 09 October 2023