ONE-POT SYNTHESIS OF SUBSTITUTED BENZIMIDAZOLE DERIVATIVES UNDER ULTRASONIC IRRADIATION USING ZnFe₂O₄ REUSABLE CATALYST

Dhanraj Kamble^{^(b)} ^a, Anil Shankarwar^a, Yuvraj Sarnikar^b, Radhakrushna Tigote^c, Mubarak Shaikh^(b) ^d, Pravin Chavan^(b) ^{e*}

 ^a Department of Chemistry, Sarswati Bhuvan Education Society's, College of Science, Paithan gate Road, Gulmandi-03, Aurangabad 431001, Maharashtra, India
^b Department of Chemistry, Dayanand Science College, Barshi Road, Prakash nagar, Latur 413531, Maharashtra, India
^c Department of Chemistry, Dr. B. A. M. University (Aurangabad) Sub-campus, Near to MIDC-Sector-2, Osmanabad 413501, Maharashtra, India
^d Department of Chemistry, Radhabai kale Mahila Mahavidyalaya, near to Tarakpur road Bus stand, Ahemadnagar- 414001, Maharashtra, India
^e Department of Chemistry, Doshi Vakil Arts College and G.C.U.B. Science & Commerce College, Goregaon, Lonere-Goregaon Road, Goregaon, Raigad 402103, Maharashtra, India

**e-mail: chemistryp141286@gmail.com; phone:* (+91 90) 28 137 355

Abstract. An efficient one-pot synthesis of benzimidazole derivatives by the condensation between various *o*-phenylenediamine and substituted aromatic aldehyde using $ZnFe_2O_4$ as a nano-catalyst under ultrasonic irradiation conditions was described. Remarkable advantages of the present synthetic strategy over the previously reported methods are shorter reaction times, higher isolated yields and simple work-up procedure. The presence of electron withdrawing and electron donating groups on the aromatic rings did not affect the yield of the product. The $ZnFe_2O_4$ catalyst was recycled after completion of reaction and was reused.

Keywords: one pot reaction, substituted benzimidazole, ultrasound irradiation, ZnFe₂O₄ catalyst, biological activity.

Received: 01 August 2022/ Revised final: 10 October 2022/ Accepted: 13 October 2022